MCQA series STANDARD CYLINDERS

Features:

Non lubrication:

Special housing and bushing enables self lubrication of piston rod.

High quality long service life:

Hard anodised aluminium cylinder tubes offer a high resistance to corrosion and low internal friction.

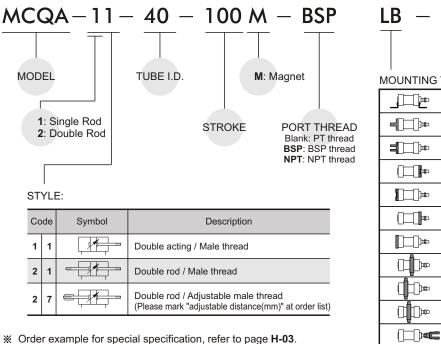
Non standard type:

Custom cylinders are available as are non standard strokes, rod extensions and special rod threads.

Cylinder mountings:

Available with comprehensive internationally recognised range of fixed and flexible mountings.

Table for standard stroke


Tube I.D.		Stroke(mm)
φ 40	50,75,100,125,150),175,200,250,300,350,400,450,500
φ 50,63	\uparrow	600
ϕ 80,100	\uparrow	600,700
φ 125,150	\uparrow	600,700,800,900,1000
φ200	\uparrow	600,700,800,900,1000,1500

MCQA Model Tube I.D. (mm) 40,50,63 80,100 125 150 200 Air Medium 0.5~9.9 kgf/cm² Operating pressure range 15 kgf/cm² Proof pressure Ambient temperature $-5 \sim +60$ °C (No freezing) Sensor switch RCA Sensor switch holder PM14 PM16 HV2 HV4 HA5

Mounting accessories:

Stroke out of specification is also available.Please consult us if stroke out of specification.

Order example:

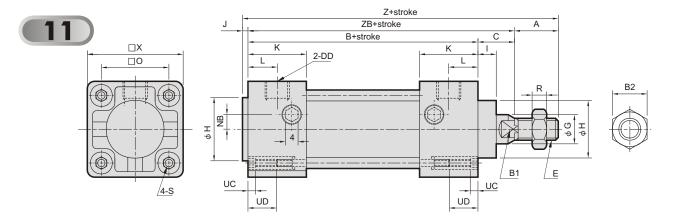
LB - 40 MODEL TUBE I.D. MOUNTING TYPE LB CA СВ FA - Only for φ40~φ63 FB

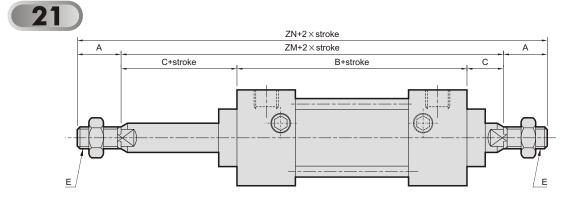
FAC

FBC

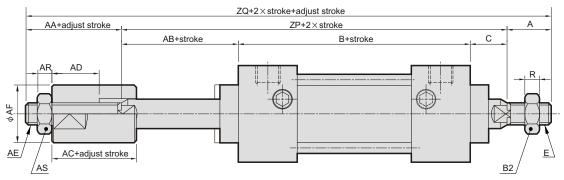
TA

ΤВ

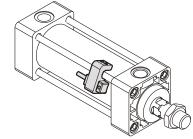

тс

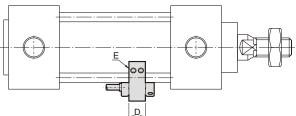

Υ

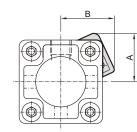
L

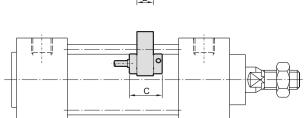

MCQA Dimensions $\phi 40 \sim \phi 100$ STANDARD CYLINDERS

27

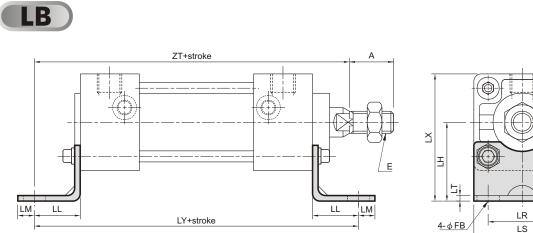



Code Tube I.D.	Α	AA	AB	AC	AD	AE	AF	AR	AS	в	B1	B2	С	DD	E	G	Н	Ι	J	κ	L	NB	0	R
40	30	21	18	12	7	M12×1.25	30	7	19	84	14	22	21	PT 1/4	$M14\!\times\!1.5$	16	32	11	3	26	13	8	40.5	8
50	35	23	18	15	10	M16×1.5	40	8	24	90	17	27	23	PT 3/8	M18×1.5	20	40	11	3	28	14	0	48	11
63	35	23	18	15	10	M16×1.5	40	8	24	98	17	27	23	PT 3/8	M18×1.5	20	40	11	3	30	15	0	59	11
80	40	33	24	20	14	M22×1.5	50	13	32	116	22	32	31	PT 1/2	M22×1.5	25	45	15	4	34	17	0	74	13
100	40	33	24	20	14	M22×1.5	50	13	32	126	27	36	32	PT 1/2	$M26\!\times\!1.5$	30	52	15	5	37	18.5	0	90	14

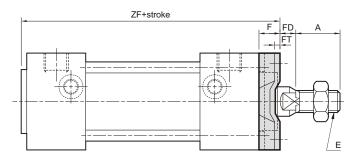

Code Tube I.D.	S	UC	UD	Х	Ζ	ZB	ZM	ZN	ZP	ZQ
40	M8×1.25	4	12	58	138	105	126	186	123	174
50	M8×1.25	4	12	66	151	113	136	206	131	189
63	M8×1.25	4	12	80	159	121	144	214	139	197
80	M12×1.75	4	15	100	191	147	178	258	171	244
100	M12×1.75	4	15	118	203	158	190	270	182	255

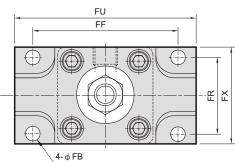


MCQA Installation of sensor switch $\phi 40 \sim \phi 200$ STANDARD CYLINDERS

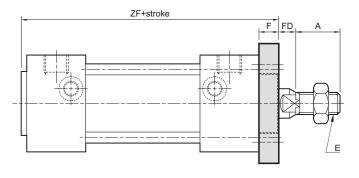


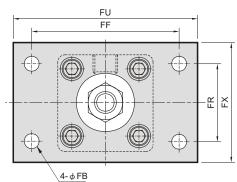
Code Tube I.D.	Sensor switch	Hold	Α	В	С	D	E
40	RCA	HV2	36	41	26	13	M4×10L
50	RCA	HV2	38	43	26	13	$M4 \times 10L$
63	RCA	HV2	46	49	26	13	M4×10L
80	RCA	HV4	52	55	26	13	$M4 \times 10L$
100	RCA	HV4	59	62	26	13	M4×10L
125	RCA	PM14	—	—	26	12	$M4 \times 10L$
150	RCA	PM16	_	—	26	12	$M4 \times 10L$
200	RCA	HA5	_	_	26	15	$M4 \times 10L$


-		
ы -		
4-φFB/	L	R S

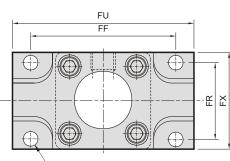

A	E	FB	LH	LL	LM	LR	LS	LT	LX	LY	ZT
30	M14×1.5	9	40	27	13	42	58	3.2	69	138	132
35	M18×1.5	9	45	27	13	50	66	3.2	78	144	140
35	M18×1.5	11.5	50	34	16	59	80	4.5	90	166	155
40	M22×1.5	14	65	44	16	76	100	6	115	204	191
40	M26×1.5	14	75	43	17	92	118	6	134	212	201
	30 35 35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M M	100 100 100 100 300 M14×1.5 9 40 27 355 M18×1.5 9 45 27 355 M18×1.5 11.5 50 34 400 M22×1.5 14 65 44	10^{-1} 10^{-1} 10^{-1} 11^{-1} 11^{-1} 30^{-1} $M14 \times 1.5$ 9 40^{-1} 27^{-1} 13^{-1} 35^{-1} $M18 \times 1.5$ 9 45^{-1} 27^{-1} 13^{-1} 35^{-1} $M18 \times 1.5^{-1}$ 11.5^{-5} 50^{-1} 34^{-1} 16^{-1} 40^{-1} $M22 \times 1.5^{-1}$ 14^{-1} 65^{-1} 44^{-1} 16^{-1}	10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 10^{-1} 30^{-1} $M14 \times 1.5$ 9 40 27 13 42 35^{-1} $M18 \times 1.5$ 9 45 27 13 50 35^{-1} $M18 \times 1.5$ 11.5 50 34 16 59 40^{-1} $M22 \times 1.5$ 14 65 44 16 76	$M_{1} \times 1.5$ 9 40 27 13 42 58 30 $M1 \times 1.5$ 9 40 27 13 42 58 35 $M18 \times 1.5$ 9 45 27 13 50 66 35 $M18 \times 1.5$ 11.5 50 34 16 59 80 40 $M22 \times 1.5$ 14 65 44 16 76 100	100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 <td>12 12 <t< td=""><td>$M1 \times 1.5$ 9 40 27 13 42 58 3.2 69 138 $M1 \times 1.5$ 9 45 27 13 50 66 3.2 78 144 $M18 \times 1.5$ 11.5 50 34 16 59 80 4.5 90 166 $M18 \times 1.5$ 11.4 65 44 16 76 100 6 115 204</td></t<></td>	12 <t< td=""><td>$M1 \times 1.5$ 9 40 27 13 42 58 3.2 69 138 $M1 \times 1.5$ 9 45 27 13 50 66 3.2 78 144 $M18 \times 1.5$ 11.5 50 34 16 59 80 4.5 90 166 $M18 \times 1.5$ 11.4 65 44 16 76 100 6 115 204</td></t<>	$M1 \times 1.5$ 9 40 27 13 42 58 3.2 69 138 $M1 \times 1.5$ 9 45 27 13 50 66 3.2 78 144 $M18 \times 1.5$ 11.5 50 34 16 59 80 4.5 90 166 $M18 \times 1.5$ 11.4 65 44 16 76 100 6 115 204

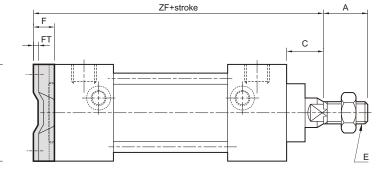
FA


Note: This type is applied to the cylinder which the stroke is within 500mm. If the stroke is over 500mm, we advise to choise the **FAC** type.



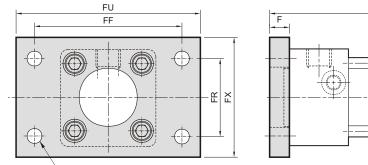
Code Tube I.D.	Α	E	F	FB	FD	FF	FR	FT	FU	FX	ZF
40	30	M14 imes 1.5	12	9	9	80	42	3.2	100	58	99
50	35	M18×1.5	12	9	11	90	50	3.2	110	66	105
63	35	M18×1.5	15	11.5	8	105	59	4.5	130	80	116

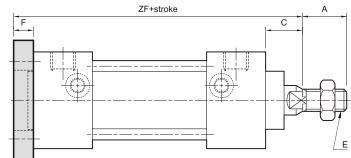



Code Tube I.D.	Α	E	F	FB	FD	FF	FR	FU	FX	ZF
40	30	$M14\!\times\!1.5$	12	9	9	80	42	100	65	99
50	35	M18×1.5	12	9	11	90	50	110	73	105
63	35	M18×1.5	15	11.5	8	105	59	130	84	116
80	40	$M22\!\times\!1.5$	18	14	13	130	76	160	108	138
100	40	M26 imes 1.5	18	14	14	150	92	180	124	149

FB

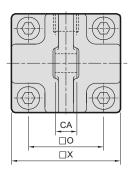
Note: This type is applied to the cylinder which the stroke is within 500mm. If the stroke is over 500mm, we advise to choise the **FBC** type.

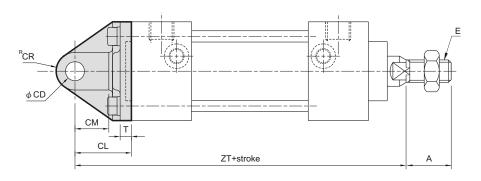




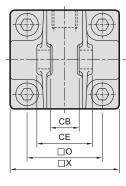
<u>4-φFB</u>

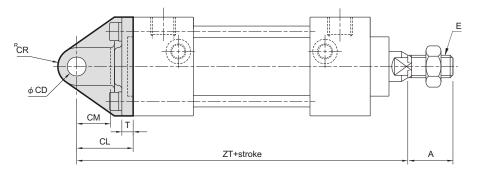
Code Tube I.D.	Α	E	С	F	FB	FF	FR	FT	FU	FX	ZF
40	30	M14 imes 1.5	21	12	9	80	42	3.2	100	58	117
50	35	M18×1.5	23	12	9	90	50	3.2	110	66	125
63	35	M18×1.5	23	15	11.5	105	59	4.5	130	80	136



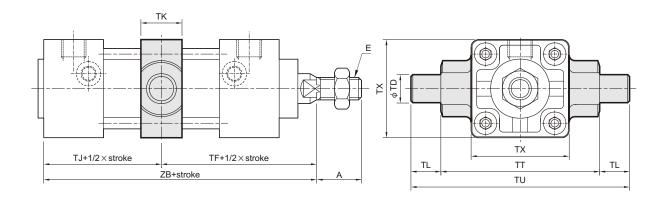

_____4-φ FB

Code Tube I.D.	Α	С	Е	F	FB	FF	FR	FU	FX	ZF
40	30	21	M14×1.5	12	9	80	42	100	65	117
50	35	23	M18×1.5	12	9	90	50	110	73	125
63	35	23	M18×1.5	15	11.5	105	59	130	84	136
80	40	31	M22 imes 1.5	18	14	130	76	160	108	165
100	40	32	M26×1.5	18	14	150	92	180	124	176

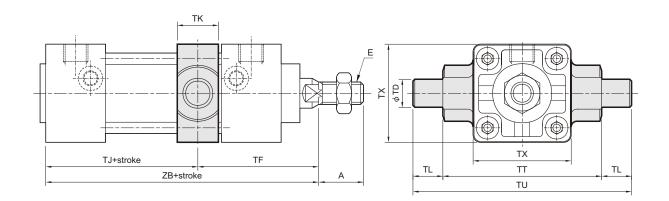




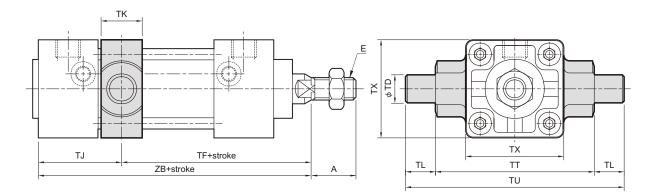
Code Tube I.D.	Α	CA	CD	CL	СМ	CR	E	0	Т	Х	ZT
40	30	$15 \ {}^{-0.1}_{-0.3}$	10 ^{H10}	30	18	10	M14 imes 1.5	40.5	5	58	135
50	35	$18 \ ^{-0.1}_{-0.3}$	12 ^{H10}	35	22	12	M18×1.5	48	5	66	148
63	35	$25 \ \ {}^{-0.1}_{-0.3}$	16 ^{H10}	40	27	16	M18×1.5	59	5	80	161
80	40	$31.5\substack{-0.1\\-0.3}$	20 ^{H10}	48	30	20	M22×1.5	74	7.5	100	195
100	40	$35.5\substack{-0.1\\-0.3}$	25 ^{H10}	58	38	25	M26×1.5	90	7.5	118	216



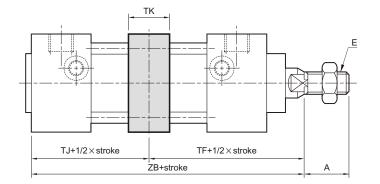
Code Tube I.D.	Α	СВ	CD	CE	CL	СМ	CR	E	0	Т	Х	ZT
40	30	$15 \ ^{+0.3}_{+0.1}$	10 ^{H10}	31.5	30	18	10	$M14\!\times\!1.5$	40.5	5	58	135
50	35	$18 \ ^{+0.3}_{+0.1}$	12 ^{H10}	40.5	35	22	12	M18×1.5	48	5	66	148
63	35	$25 \ ^{+0.3}_{+0.1}$	16 ^{H10}	53	40	27	16	M18×1.5	59	5	80	161
80	40	$31.5^{+0.3}_{+0.1}$	20 ^{H10}	60.8	48	30	20	$M22\!\times\!1.5$	74	7.5	100	195
100	40	$35.5\substack{+0.3\\+0.1}$	25 ^{H10}	69	58	38	25	$M26\!\times\!1.5$	90	7.5	118	216

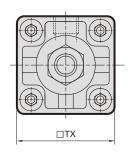


Code Tube I.D.	Α	E	TD	TF	ТJ	тк	TL	TT	TU	ΤХ	ZB
40	30	M14 imes 1.5	15 ^{e8}	63	42	22	16	85	117	58	105
50	35	M18×1.5	15 ^{e8}	68	45	22	16	95	127	67	113
63	35	M18×1.5	18 ^{e8}	72	49	28	19	110	148	82	121
80	40	M22×1.5	25 ^{e8}	89	58	34	26	140	192	102	147
100	40	M26×1.5	25 ^{e8}	95	63	40	26	162	214	122	158



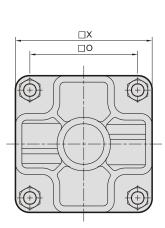
Code	Α	Е	TD	TF	without	magnet	mag	gnet	тк	TL	тт	ти	тх
Tube I.D.	A	E		11	TJ	ZB	TJ	ZB	IK	16		10	
40	30	M14×1.5	15 ^{e8}	60	45	105	75	135	22	16	85	117	58
50	35	M18×1.5	15 ^{e8}	64	49	113	79	143	22	16	95	127	67
63	35	M18×1.5	18 ^{e8}	69	52	121	82	151	28	19	110	148	82
80	40	M22×1.5	25 ^{e8}	85	62	147	102	187	34	26	140	192	102
100	40	M26×1.5	25 ^{e8}	92	66	158	106	198	40	26	162	214	122

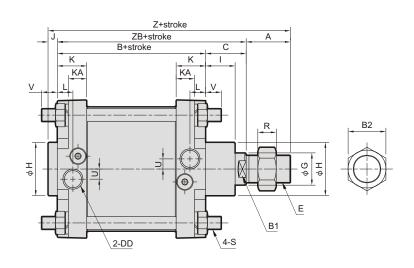




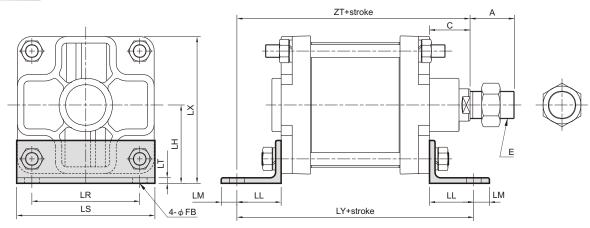
Code	•	Е	TD	without	magnet	ma	gnet	ТJ	тк	TL	тт	ти	тх
Tube I.D.	A	E	U	TF	ZB	TF	ZB	15	IN	16		10	
40	30	$M14\!\times\!1.5$	15 ^{e8}	66	105	96	135	39	22	16	85	117	58
50	35	M18×1.5	15 ^{e8}	72	113	102	143	41	22	16	95	127	67
63	35	M18×1.5	18 ^{e8}	75	121	105	151	46	28	19	110	148	82
80	40	M22×1.5	25 ^{e8}	93	147	133	187	54	34	26	140	192	102
100	40	M26 imes 1.5	25 ^{e8}	98	158	138	198	60	40	26	162	214	122

Stroke over 1000mm

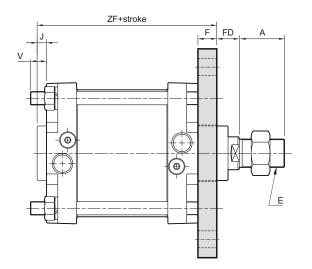


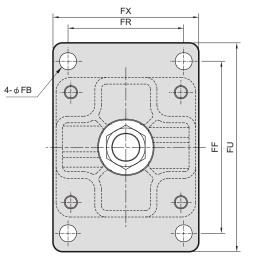

Code Tube I.D.	Α	E	TF	TJ	тк	ΤХ	ZB
40	30	M14 imes 1.5	63	42	22	58	105
50	35	M18×1.5	68	45	22	67	113
63	35	M18×1.5	72	49	28	82	121
80	40	M22×1.5	89	58	34	102	147
100	40	M26×1.5	95	63	40	122	158

MCQA Dimensions ϕ 125~ ϕ 200 STANDARD CYLINDERS

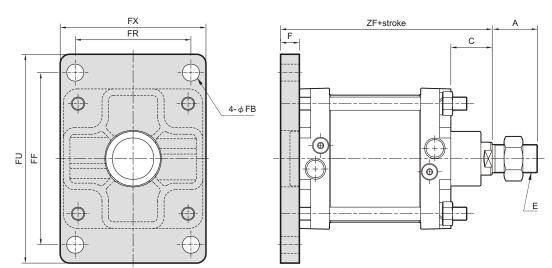

11

Code Tube I.D.	Α	В	B1	B2	С	DD	E	G	Н	I	J	Κ	KA	L	0	R	S	U	V	X	Ζ	ZB
125	45	136	30	41	47	PT 1/2	M30 imes 1.5	35	58	32	10	32	20	17	117	15	M14 imes 1.5	11	20	150	238	183
150	50	153	36	41	47	PT 1/2	M30×1.5	40	60	32	8	40.5	25	24.5	134	15	M16×1.5	12	26	175	258	200
200	63	154	46	70	67	PT 3/4	M45×1.5	50	74	35	8	42	25	24	182	27	M20×1.5	12	18	226	292	221

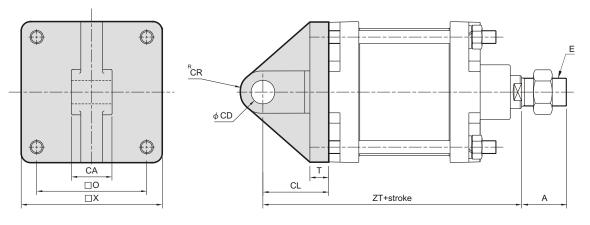

LB



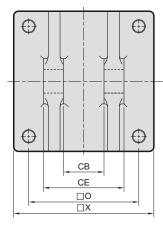
Code Tube I.D.	Α	E	FB	LH	LL	LM	LR	LS	LT	LX	LY	ZT
125	45	M30×1.5	16	85	48	17	117	150	6	162	232	231
150	50	M30×1.5	18	96.5	55	20	134	175	9	184	263	255
200	63	M45 imes 1.5	24	132	60	30	150	226	10	245	274	281

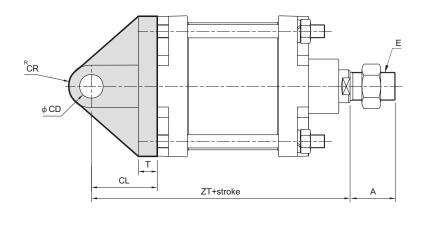


Code Tube I.D.	Α	E	F	FB	FD	FF	FR	FU	FX	J	V	ZF
125	45	M30×1.5	20	18	27	183	123	222	155	10	20	166
150	50	M30×1.5	20	18	27	230	134	275	185	8	26	181
200	63	M45 imes 1.5	25	24	42	280	150	335	225	8	11	187

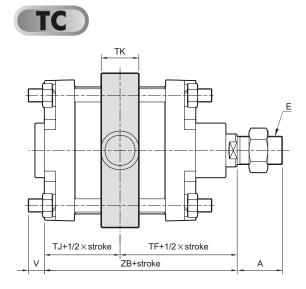


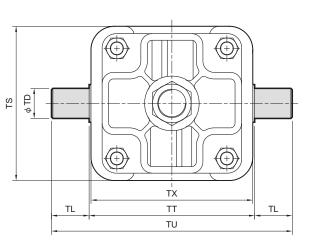
Code Tube I.D.	Α	С	E	F	FB	FF	FR	FU	FX	ZF
125	45	47	M30×1.5	20	18	183	123	222	155	203
150	50	47	M30×1.5	20	18	230	134	275	185	220
200	63	67	M45×1.5	25	24	280	150	335	225	246



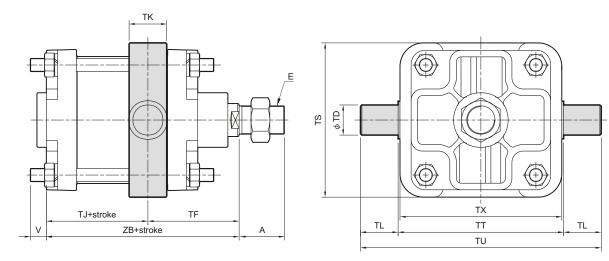


Code Tube I.D.	Α	CA	CD	CL	CR	E	0	Т	Х	ZT
125	45	$43\substack{-0.1\\-0.3}$	25 ^{H10}	65	24	M30 imes 1.5	117	15	150	248
150	50	$40\substack{-0.1\\-0.3}$	30 ^{H10}	78	27.5	M30×1.5	134	20	175	278
200	63	$50\substack{-0.1\\-0.3}$	40 ^{H10}	85	40	M45 imes 1.5	182	25	226	306

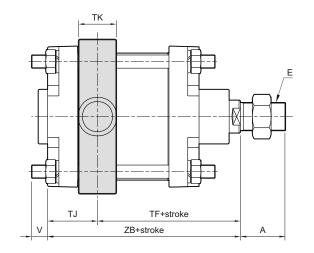


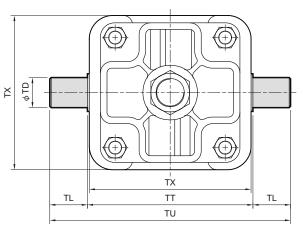


Code Tube I.D.	Α	СВ	CD	CE	CL	CR	E	0	Т	Х	ZT
125	45	$43\substack{+0.3\\+0.1}$	25 ^{H10}	85.5	70	24	M30×1.5	117	20	150	253
150	50	$40\substack{+0.3\\+0.1}$	30 ^{H10}	90	78	27.5	M30×1.5	134	20	175	278
200	63	$50\substack{+0.3\\+0.1}$	40 ^{H10}	100	85	40	M45 imes 1.5	182	25	226	306

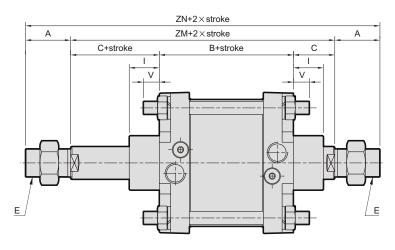


Code Tube I.D.	Α	E	TD	TF	ТJ	тк	TL	TS	TT	TU	ΤХ	V	ZB
125	45	$M30\!\times\!1.5$	32 ^{e8}	115	68	40	40	164	176	256	172	17	183
150	50	$M30\!\times\!1.5$	35 ^{e8}	123.5	76.5	41	40	194	200	280	198	16	200
200	63	M45×1.5	45 ^{e8}	144	77	59	45	255	265	355	255	8.5	221

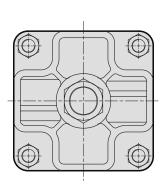



Code Tube I.D.	Α	E	TD	TF	ТJ	тк	TL	TS	TT	TU	ΤХ	V	ZB
125	45	M30 imes 1.5	32 ^{e8}	100	83	40	40	164	176	256	172	17	183
150	50	M30×1.5	35 ^{e8}	109	91	41	40	194	200	280	198	16	200
200	63	M45 imes 1.5	45 ^{e8}	139.5	81.5	59	45	255	265	355	255	8.5	221

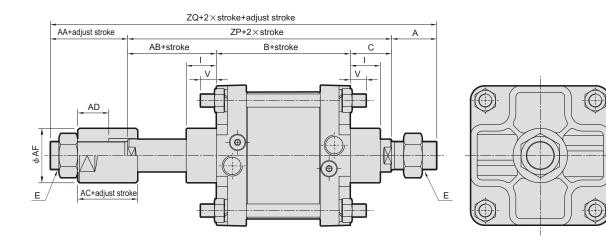
MCQA Mounting accessories ϕ 125~ ϕ 200 STANDARD CYLINDERS



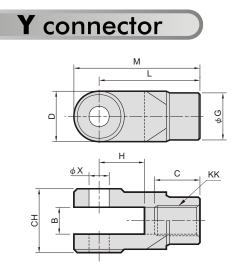
Code Tube I.D.	Α	E	TD	TF	ТJ	тк	TL	TS	TT	TU	ΤХ	V	ZB
125	45	$M30\!\times\!1.5$	32 ^{e8}	130	53	40	40	164	176	256	172	17	183
150	50	M30×1.5	35 ^{e8}	138	62	41	40	194	200	280	198	16	200
200	63	$M45\!\times\!1.5$	45 ^{e8}	148.5	72.5	59	45	255	265	355	255	8.5	221

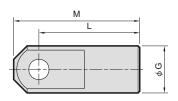


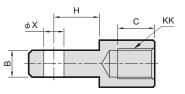
MCQA Dimensions ϕ 125~ ϕ 200 STANDARD CYLINDERS

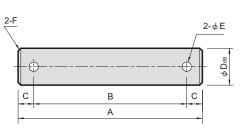


Code Tube I.D.	Α	В	С	E	I	V	ZM	ZN
125	45	136	47	M30×1.5	32	20	230	320
150	50	153	47	M30×1.5	32	26	247	347
200	63	154	67	M45×1.5	35	18	288	414

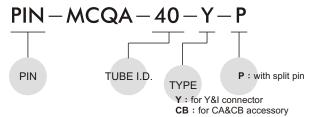





Code Tube I.D.	Α	AA	AB	AC	AD	AF	В	С	E	I	V	ZM	ZN	ZP	ZQ
125	45	38	47	30	18	60	136	47	M30 imes 1.5	32	20	230	320	230	313
150	50	38	47	30	18	60	153	47	M30×1.5	32	26	247	347	247	335
200	63	38	50	30	18	70	154	67	M45×1.5	35	18	288	414	271	372


I connector

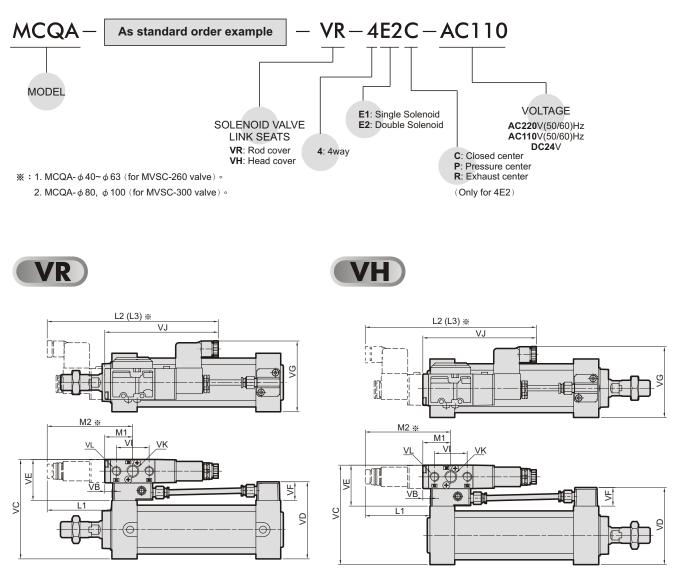
Code	E	3	()	С	Н	[)	(3	ŀ	ł	KK		L	ľ	N	¥ H10
Tube I.D.	Y	Ι	Υ	Ι	Y	Ι	Υ	Ι	Y	Ι	Υ	Ι	ΥI	Y	Ι	Y	Ι	^
40	$16\substack{+0.3\\+0.1}$	$16\substack{-0.1\\-0.3}$	25	20	38		26	\square	φ24	φ24	25	25	M14×1.5	55	55	68	68	$\phi_{12_{0}^{+0.07}}^{+0.07}$
50	16 ^{+0.3}	16 ^{-0.1} -0.3	27	22	38		30		φ28	420	27	27	M18×1.5	60	60	75	75	$\phi 12^{+0.07}_{0}$
63	10+0.1	10_0.3	21	22	30		30	\bigvee	ΨΖΟ	ΨΖΟ	21	21	11110 × 1.3	00	00	15	75	ψ_{12}
80	$28\substack{+0.3\\+0.1}$	$28\substack{-0.1\\-0.3}$	32	27	55	\langle	38		φ36	φ36	32	32	M22×1.5	71	71	90	90	ϕ 18 $^{+0.07}_{0}$
100	$30^{+0.3}_{+0.1}$	$30\substack{-0.1\\-0.3}$	35	30	59		42		φ40	<i>φ</i> 40	38	38	M26×1.5	83	83	104	104	$\phi_{20}^{+0.08}$
125			35	40	76		58	\checkmark	<i></i> Φ45	<i></i> \$49	38	32	M30×1.5	80	80	109	109	$\phi_{20}^{+0.08}_{0}$
		$40\substack{-0.1\\-0.3}$	35	40	84		54		φ45	<i>φ</i> 60	39	32	M30×1.5	80	80	107	107	$\phi_{25_{0}^{+0.08}}$
200	$50^{+0.3}_{+0.1}$	$50^{-0.1}_{-0.3}$	67	67	100	\angle	85		φ70	φ70	54	44	M45×1.5	125	125	167.5	167.5	$\phi_{40^{+0.1}_{0}}$



for Y & I connector

Code Tube I.D.	Α	В	С	D ^{d9}	Е	F	Split pin
40 2 63	57	46	5.5	ϕ 12 $^{-0.05}_{-0.09}$	3.5	1.0	3.2×20L
80	78	64	7	$\phi_{18^{-0.05}_{-0.09}}$	4	1.2	4×25L
100	87	70	8.5	$\phi 20^{-0.06}_{-0.12}$	5	1.5	5×35L
125	100	83	8.5	$\phi_{20^{-0.06}_{-0.12}}$	5	1.5	5×35L
150	112	95	8.5	$\phi_{25^{-0.06}_{-0.12}}$	5	2.0	5×35L
200	115	105	5	$\phi_{40^{-0.08}_{-0.14}}$	5	2.0	5×55L

Order example:



for CA & CB

Code Tube I.D.	Α	В	С	D ^{d9}	Е	F	Split pin
40	48	37	5.5	$\phi 10^{-0.05}_{-0.09}$	3.5	1.0	3.2×20L
50	57	46	5.5	$\phi_{12^{-0.05}_{-0.09}}$	3.5	1.0	3.2×20L
63	72	58	7	$\phi_{16^{-0.05}_{-0.09}}$	4	1.2	4×25L
80	87	70	8.5	$\phi_{20-0.12}^{-0.06}$	5	1.5	5×35L
100	93	76	8.5	$\phi_{25-0.12}^{-0.06}$	5	1.5	5×35L
125	112	95	8.5	$\phi_{25{}^{-0.06}_{-0.12}}$	5	1.5	5×35L
150	119	102	8.5	$\phi_{30^{-0.06}_{-0.12}}$	5	2.0	5×40L
200	115	105	5	$\phi_{40^{-0.08}}$	5	2.0	5×55L

Order example:

Code Tube I.D.	L1	L2	L3	M1	M2	VB	VC	VD	VE	VF	VG	VI	VJ	VK	VL	Valve type
40	77.5	199	220	31.5	99.5	9.5	104.2	79	46.2	21	76	37	131	PT 1/4	PT 1/8	MVSC-260
50	78.5	199	220	31.5	99.5	8.5	112.2	87	46.2	21	80	37	131	PT 1/4	PT 1/8	MVSC-260
63	79.5	199	220	31.5	99.5	7.5	126.2	101	46.2	21	87	37	131	PT 1/4	PT 1/8	MVSC-260
80	80.5	222	275	45	111	14.5	159	128	59	28	90	52	156	PT 3/8	PT 3/8	MVSC-300
100	78.5	222	275	45	111	12.5	179	146	59	28	104	52	156	PT 3/8	PT 3/8	MVSC-300

% L2 for 4E2 size, L3 for 4E2C.P.R size, M2 for 4E2 and 4E2C.P.R size.